Accurate detection and genotyping of SNPs utilizing population sequencing data.
نویسندگان
چکیده
Next-generation sequencing technologies have made it possible to sequence targeted regions of the human genome in hundreds of individuals. Deep sequencing represents a powerful approach for the discovery of the complete spectrum of DNA sequence variants in functionally important genomic intervals. Current methods for single nucleotide polymorphism (SNP) detection are designed to detect SNPs from single individual sequence data sets. Here, we describe a novel method SNIP-Seq (single nucleotide polymorphism identification from population sequence data) that leverages sequence data from a population of individuals to detect SNPs and assign genotypes to individuals. To evaluate our method, we utilized sequence data from a 200-kilobase (kb) region on chromosome 9p21 of the human genome. This region was sequenced in 48 individuals (five sequenced in duplicate) using the Illumina GA platform. Using this data set, we demonstrate that our method is highly accurate for detecting variants and can filter out false SNPs that are attributable to sequencing errors. The concordance of sequencing-based genotype assignments between duplicate samples was 98.8%. The 200-kb region was independently sequenced to a high depth of coverage using two sequence pools containing the 48 individuals. Many of the novel SNPs identified by SNIP-Seq from the individual sequencing were validated by the pooled sequencing data and were subsequently confirmed by Sanger sequencing. We estimate that SNIP-Seq achieves a low false-positive rate of approximately 2%, improving upon the higher false-positive rate for existing methods that do not utilize population sequence data. Collectively, these results suggest that analysis of population sequencing data is a powerful approach for the accurate detection of SNPs and the assignment of genotypes to individual samples.
منابع مشابه
A probabilistic method for the detection and genotyping of small indels from population-scale sequence data
MOTIVATION High-throughput sequencing technologies have made population-scale studies of human genetic variation possible. Accurate and comprehensive detection of DNA sequence variants is crucial for the success of these studies. Small insertions and deletions represent the second most frequent class of variation in the human genome after single nucleotide polymorphisms (SNPs). Although several...
متن کاملMultiplex PCR Targeted Amplicon Sequencing (MTA-Seq): Simple, Flexible, and Versatile SNP Genotyping by Highly Multiplexed PCR Amplicon Sequencing
Next-generation sequencing (NGS) technologies have enabled genome re-sequencing for exploring genome-wide polymorphisms among individuals, as well as targeted re-sequencing for the rapid and simultaneous detection of polymorphisms in genes associated with various biological functions. Therefore, a simple and robust method for targeted re-sequencing should facilitate genotyping in a wide range o...
متن کاملAn integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data.
Next-generation sequencing is a powerful approach for discovering genetic variation. Sensitive variant calling and haplotype inference from population sequencing data remain challenging. We describe methods for high-quality discovery, genotyping, and phasing of SNPs for low-coverage (approximately 5×) sequencing of populations, implemented in a pipeline called SNPTools. Our pipeline contains se...
متن کاملGenetic Diversity, Population Structure, and Linkage Disequilibrium of a Core Collection of Ziziphus jujuba Assessed with Genome-wide SNPs Developed by Genotyping-by-sequencing and SSR Markers
Chinese jujube (Ziziphus jujuba Mill) is an economically important fruit species native to China with high nutritious and medicinal value. Genotyping-by-sequencing was used to detect and genotype single nucleotide polymorphisms (SNPs) in a core collection of 150 Chinese jujube accessions and further to characterize their genetic diversity, population structure, and linkage disequilibrium (LD). ...
متن کاملReliable In Silico Identification of Sequence Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris)
Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2010